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CORRELATION LENGTH AND ITS CRITICAL EXPONENTS

FOR PERCOLATION PROCESSES

Bao Gia Nguyen
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Abstract

In this paper we show some critical exponent inequalities involving the

dcorrelation length of site percolation process on d.
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Section I. Introduction

first definerthe m~iel and introduce the notation we will use-rin ths
r I

paper. A site percolation process ini (here df 2) is a family of probability

measures P, pE [0,I], together with a collection of random variables Tj :ZA,(0,

such that under P the O are independent and P!(4(x) = 1)= p. A site x ispP

thought of being occupied (nonoccupied) if n(x) = I (n(x)= 0). We say that x is

connected to y if there is a path of occupied sites connecting x and y; i.e.

there is a sequence of sites x-x X,. x1=y inZ so that x'and x

are nearest neighbors and n(x)= 1 for every i= 0,l,2,..., n. We denote this

event by (xjy). Let C ={x :0 4 x}. We say that Cd/is the cluster containing 0.

It has been shown by Aizenman-Newman [1984] that P (0-x) decays exponen-P

tially whenever the site density p is below the critical value

PC = sup{p :E (IC01) < CO}.

This leads to the definition of the correlation length (p) as the minimal value

for which

P (0-x) _< exp(-Ixj/C(p)), for all XE Z.
Vp

It is easy to see by the FKG inequality that the minimum is attained. Further-

more, one can show that E(p) + - as p + Pc. It is of our interest to study the rate

of decay of the correlation length as p+ p c' which can be represented by the

critical exponent v defined by

V = -lim log(p)
PtPc log(P c- 

p )

. We denote this by (p)z(pc P)

As suggested by many physicists it is believed that the correlation length

(p) can be thought of as being the same as the length scales:

4 % '% - N
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(p) = 1[[x tP (0 +x)/YP (0 x)] /t
x Px P

(see e.g. Essam [1980]). To be more precise, we say that the two length scales

(p) andC*(p) are the same if they decay at the same rate; i.e. if we assume
't 

-V
that Et(p)(p c-p) t then V= V t

. In support of the above belief we give a

proof of the following weaker result and its corollary.

Result (1): 0 v-V t
t t

where Y is the critical exDonent of E (IC 0 1), i.e.

E (Co')(pc-p)-Y

Corollary: lim V = X.
t-x*t

In Section 2 we will give a proof for the Result (I). In the course of doing

this we prove some critical exponent inequalities related to scaling theory in

Section 3. The scaling theory (see Essam [1980]) predicted that

(*) P (0 x) Ix,-(d- 2+n)f(IxI / (p)) as p t pc

where f(r) is a function with f(0) > 0 and f(r) -0 exponentially fast as r- ,

and n is the critical exponent defined by

P (0.x) zIxI - (d - 2 +l) as lxi +o.
Pc

Assuming the scaling hypothesis (*) we can see, by Fubini's theorem, that

Ep(IC 0 1) = xj (0 x) x(-2+r)f x I (p))
x p  

x

= (p)2-n I 1z-(d-2+)f(izl)
z=x/ (p)

= Constant* • (p)2-nz (p p)-(2-n)v
C
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This leads to the critical exponent equality

y = (2-n)v.

As we shall see later, this equality is at least half correct if we assume,

for B a box of radius n centered at 0, that
n

E (IC 0 nBnI) : I P (0O-x)zn
2 - T

c xcB c
n

in replacing the old definition of q as above. (The two definitions for q are

expected to be the same. In order for our proof to work we want to stick with

the second definition of n). In fact we shall show that it is safe to truncate

the sum Ep(fC 0t) = Ex 
P p(0-x) at n- 2Ct(p) without losing more than a half of

the sum as in the result below.

Result (2): Ep(IC 0 1) - E (IC0 oB 1) _> (l---)Ep(IC0 1).

With this bound in hand we immediately see that

y : (2 - n)\ t .

Also in the same section we will show a lower bound for the critical exponent

v: dv A2, where A2 is defined by

2 -A2

E(IC012 )/Ep(IC0I) Z(Pc p) as p t pc.

This together with our earlier mean field bound A2 > 2 implies that V 2/d.

VI~
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Section 2. In this section we shall prove the Result I. Let

N(p) = inf{n : I P (Ox) < 1}
x:Ixl=n p  2

Aizenman-Newman [1984] have shown that

N(p)-<2Ep(lC 0 1) for

and also

P (O-x) _< exp(- g xj)p N(p)

This shows (3) c(p) <N(p)/2. On the other hand from definition of the correla-

tion length

I P (O x) I = exp(-Ixl/c(p)) -1 Knd-lexp(- n--).

x:ix=n x: Ixn

Hence if n = dE(p)logc(p) and if p is close enough to pc the RHS will be

smaller than 1/2 which gives

(4) N(p) -< dc(p)logc(p).

Thus by (3) and (4),N(p) and c(p) share the same critical exponent. With this

in hand we see that

*p ( 0  N(p) N(p) [N(p)]t I

cE p (IC0 ) Ix [tP( x) > x1tp (OYP x) X 2 2
x x:txl= N(p)/2 n=N(p)/2

1 N(p)t'l

2 t+2

where in the second inequality we used the fact that E P (0 x) >- 21 ifx:IxI=n p 2
n-<N(p). This leads to the critical inequality

tv + y - (t+l)v

or

(5) Y- > V-
t t

Furthermore, it is easy to see from the Jensen's inequality that ct is in-

creasing in t, hence so is Vt. Thus lim t_,,V t exists. Then letting tt - we get

from (5)
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v- limV v-0.
tt-KO

To show the other half we look at

t E (IC0 ) : 7xtp (0 x)! < Xjxjtexp<- xj/ (P))
x 

x

Co

- K I td-lexp(-n/ (p))

n=0
CO Go

K n t+d-exp(- )-K X (p)[(t+1)C(p)] tdexp(-)
e=o tC(p)<n<(/+I)E(p) =0

= K1 [R(p)I]t+d
K lit+d-l

where K = K E =0 (t+1) exp(-/). In terms of the critical exponent we have
I f=0

(t+d)v tv t+y

or

(6) V _ V -dv
t t

Letting tt - from (5) and (6) we get the corollary of Result (1) and from this we

know that v2> v so the Result (I) follows.
t

-U

.U
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Section 3. In this section we shall show Result (2) and derive a lower bound

for v. The proof of the result is analogous to Fisher's [1960] argument for

the Ising model. Observe that

E (IC nBI) 1 P (O-x)
P ON x:xl<_N P

K P (0-x)] , ntp (0-X)
E _I 1 >IE P (I ).

NET-, p t p 0

X: xI > P 0 x lx >N NtEp(jC01)] [C 1

t
-(i- t)EpIo)

tBy choosing N _-2, t we get the second inequality of (2):

E(ICnB) (1 - -)E (1 Cp pN [ Co0

The other equality of result (2) is trivial. To get a lower bound for v

we look at

E p(C 0
2) = 2 P (0 -x,y) -< 2 - PP(0-x, 0 -Y)= x,y x,y:~x y

2YP (O-x )  P (O~tlOx) < 2KIlx dp (0 x)
x Y:1Y <-x[ p  x P

K' d E (ICoI)

d p 0

In terms of the critical exponents we have

-2-y

LHS z (p -p)
c

-dv d -y,.RHS ;- (P c- P)- d-

* So A <dv
2 d

But we know that A2 -2 (see Durrett-Nguyen [19851), so we have

dv _dv d >A > 2 or v ?2/d. QED

dP 4k
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